Journal of Organometallic Chemistry, 268 (1984) 235-245 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DARSTELLUNG YLIDISCHER METALLACYCLOPROPANKOMPLEXE DURCH RINGVERKLEINERUNG METALLACYCLISCHER VINYLKETONKOMPLEXE. MOLEKÜLSTRUKTUR VON $C_5H_5W(CO)_2[(PMe_3)HC-CH(COMe)]$

H.G. ALT*

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstrasse 30, D-8580 Bayreuth (Bundesrepublik Deutschland)

und U. THEWALT *

Anorganisch-Chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-8046 Garching (Bundesrepublik Deutschland)

(Eingegangen den 15. Februar 1984)

Summary

The addition of trimethylphosphane to five-membered metallacyclic vinylketone complexes of the type ArM(CO)₂(HC=CH-COR) (I) (Ar = η^5 -aromatic ring system: C₅H₅, C₅H₄Me, C₅Me₅; R = Me, Et, n-Bu; M = Mo, W) in pentane solution results in the formation of the ylidic metallacyclopropane complexes ArM(CO)₂[(PMe₃)-HC-CH(COR)] (II). In these 1:1 adducts the three-membered ring is stabilized by an electron-donating phosphonium and an electron-attracting acyl substituent. The negative charge in the ylidic complexes II is localized on the central metal providing it with Lewis base properties. An extraordinary high electron density can be observed on the metal of the derivative C₅H₅W(CO)(PMe₃)[(PMe₃)HC-CH-(COMe)] (III) which is formed by a 1:2 addition of C₅H₅W(CO)(C₂H₂)-(COMe) and PMe₃. The metallacyclopropane complexes II and III are characterized by IR, ¹H NMR, ¹³C NMR, ³¹P NMR and mass spectroscopy. For C₅H₅W(CO)₂[(PMe₃)HC-CH(COMe)], the results of an X-ray structure determination are presented.

Zusammenfassung

Die Addition von Trimethylphosphan an fünfgliedrige metallacyclische Vinylketonkomplexe des Typs ArM(CO)₂(HC=CH-COR) (I) (Ar = η^5 -gebundener Aromat:

^{*} Permanente Adresse: Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, Oberer Eselsberg, D-7900 Ulm.

 C_5H_5 , C_5H_4 Me, C_5Me_5 ; R = Me, Et, n-Bu; M = Mo, W) führt in Pentanlösung unter Ringverkleinerung zu ylidischen Metallacyclopropankomplexen des Typs ArM(CO)₂[(PMe₃)HC-CH(COR)] (II). In diesen 1:1-Addukten wird der Metallacyclopropanring durch einen elektronenschiebenden Phosphonium- und einen elektronenziehenden Acylsubstituenten stabilisiert. Die negative Ladung im Ylidkomplex ist am Zentralmetall lokalisiert, wodurch das Zentralmetall Lewis-Basecharakter erhält. Auf eine besonders hohe Elektronendichte am Metall kann bei dem Derivat C₅H₅W(CO)(PMe₃)[(PMe₃)HC-CH(COMe)] (III) geschlossen werden, das durch 1:2-Addition aus C₅H₅W(CO)(C₂H₂)(COMe) und PMe₃ zugänglich ist. Die Metallacyclopropankomplexe II und III werden durch IR-, ¹H-, ¹³C- und ³¹P-NMR- und Massenspektroskopie charakterisiert. Von C₅H₅W(CO)₂[(PMe₃)-HC-CH(COMe)] liegt eine Röntgenstrukturanalyse vor.

Einleitung

Die photoinduzierte Umsetzung der Alkylkomplexe ArM(CO)₃R (Ar = η^5 gebundener Aromat: C₅H₅, C₅H₄Me, C₅Me₅; R = Me, Et, n-Pr, n-Bu; M = Mo, W) mit Acetylenen R¹C=CR² (R¹, R² = H, Me, Ph) führt über Acetylenkomplexe zu fünfgliedrigen metallacyclischen Alkenylketonkomplexen des Typs ArM(CO)₂-(R¹C=CR²-COR) [1-5]. Die ¹H- und ¹³C-NMR-spektroskopischen Daten dieser Komplexe lassen erkennen, dass das C_a-Atom im Metallacyclus elektrophil ist. Vorläufige Ergebnisse [6] bestätigen, dass ein Basenangriff an C_a stattfinden kann. In <u>dieser Arbeit</u> wird über die Reaktivität der Vinylketonkomplexe ArM(CO)₂(HC=CH-COR) (I) gegenüber Trimethylphosphan berichtet.

Ergebnisse und Diskussion

Synthese und spektroskopische Charakterisierung

Die metallacyclischen Vinylketonkomplexe $Ar\dot{M}(CO)_2(H\dot{C}=CH-C\dot{O}R)$ (I) (M = Mo, W; R = Me, Et, n-Bu) addieren in Pentanlösung bei – 30°C Trimethylphospan im Verhältnis 1/1, wobei nahezu quantitativ Metallacyclopropanverbindungen (II) entstehen:

Diese Reaktion verläuft langsam (in einer Woche ca. 5% Umsatz), wenn C_{α} am Metallacyclus einen Methylsubstituenten trägt. Einfach oder fünffach methylsubstituierte Cyclopentadienylderivate des Typs I [7] liefern analoge Produkte. Die IR-

sowie die ¹H-, ¹³C- und ³¹P-NMR-Spektren stehen mit der Vorstellung in Einklang, dass es sich bei II um Metallacyclopropanverbindungen handelt, die verzerrt tetragonal-pyramidal gebaut sind. Im IR-Spektrum weisen zwei gleich intensive ν (CO)-Banden (1760–1886 cm⁻¹, in THF) bei relativ niedriger Energie darauf hin, dass die beiden terminalen Carbonylliganden *cis*-ständig zueinander stehen und an ein Metall koordiniert sind, das eine hohe Elektronendichte aufweist. Eine schwächer ausgeprägte Bande um 1630 cm⁻¹ (in THF) kann auf die C=O-Valenzschwingung des Acylsubstituenten zurückgeführt werden.

Die Zuordnung der ¹H- und ¹³C-NMR-Signale in den Metallacyclopropankomplexen II lässt sich zweifelsfrei aufgrund der P-H- und P-C-Kopplungen treffen. Das ³¹P-entkoppelte ¹H-NMR-Spektrum zeigt ein AB-System für die beiden Dreiringwasserstoffatome mit einer entsprechenden ${}^{3}J(H,H)$ -Kopplung (8–9 Hz). Die Beobachtung von zwei ¹J(W,C)-Kopplungen für die beiden Dreiringkohlenstoffatome in den W-Derivaten von II (ca. 20-40 Hz) bestätigt, dass beide C-Atome direkt an das Metall σ -gebunden sind. Im gleichen Sinne ist das Auftreten von $^{2}J(W,H)$ -Kopplungen (3–5 Hz) zu werten. Die $^{1}J(C,H)$ -Kopplungen (143–146 Hz) der beiden Metallacyclopropankohlenstoffatome kommen der ${}^{1}J(C,H)$ -Kopplung im freien Cyclopropan (162 Hz) sehr nahe [8,9], und sind gut vergleichbar mit den $^{1}J(C,H)$ -Kopplungen des C₂H₄-Liganden in den Komplexen (C₅H₅)₂MoC₂H₄ (153 Hz) [10] und $(C_5H_5)_2Ta(C_2H_4)H$ (150 und 155 Hz) [11], die als Metallacyclopropanderivate angesehen werden. Die beiden terminalen CO-Liganden in II lassen sich an zwei Signalen erkennen, von denen eines — vermutlich das des zum Phosphoniumsubstituenten mehr trans-ständigen CO-Liganden — eine schwach ausgebildete ${}^{3}J(P,C)$ -Kopplung (ca. 9 Hz) aufweist. Die Methylcyclopentadienylkomplexe des Typs II zeigen im ¹H- und ¹³C-NMR-Spektrum für alle vier aromatischen Ringwasserstoffatome bzw. alle fünf Ringkohlenstoffatome unterschiedliche Signale. Dies erklärt sich dadurch, dass der C_5H_4 Me-Ring durch die Koordination an das Komplexfragment chiral wird. Die analogen $C_{s}Me_{s}$ -Derivate ergeben jeweils nur ein einziges Signal für die fünf Methyl- bzw. Ringkohlenstoffatome.

Die Reaktion von I mit PMe₃ verläuft unter Öffnung der Metall-Sauerstoffbindung und Knüpfung einer neuen Metall-Kohlenstoffbindung über C_{β} und führt zu einem neuen Typ von Ylidkomplexen (vgl. [12]). Dieser Reaktionsschritt ist aussergewöhnlich, weil sonst bei den schwereren Homologen einer Übergangsmetall-Nebengruppe die Affinität des Sauerstoffs zum Metall über die des Kohlenstoffs dominiert.

Der Lewis-Basecharakter des Zentralmetalls in II kann noch gesteigert werden, wenn ein terminaler CO-Ligand durch PMe₃ substituiert wird. Die Darstellung derartiger Komplexe gelingt, wenn Acetylen-Acylkomplexe des Typs ArM-(CO)(C_2H_2)COR mit überschüssigem PMe₃ umgesetzt werden [13].

Komplex	IR	¹ H-NMR ^b				MS	Fp (°C)
	ν(CO) " (cm ⁻¹)	δ(η ⁵ -Ar)	8(HC-CH)	0 8(C-R)	δ(PMe ₃) [J(P.H) in Hz]	<i>m/z</i> [bez. auf % Mo bzw. ¹⁸⁴ W]	[Zers.] (u Argon)
C ₅ H ₅ Mo(CO) ₂ {(PMe ₃)HC-CH(COMe)]	1886, 1779; 1628	4.97	2.44(d,d)/n.e. [12.9 '/[3.5] °	2.21	1.59(d) [12.9]	362	45
C ₅ H ₄ MeMo(CO) ₂ [(PMe ₃)HC-CH(COMe)]	1885, 1778; 1628	4.77(m) 4.71(m) 2.20	2.37(d,d)/n.e. [12.9] ^c /[9.0] ^c	2.01	1.58(d) [12.9]	376	120
C ₅ Me ₅ Mo(CO) ₂ [(PMe ₃)HĊ-ĊH(COMe)]	1882, 1766; 1620	1.75	2.44(d.d)/0.92(d.d) [12.6] '/[8.9] ^d [8.9] ^e	2.00	1 55(d) [12.8]	432	170
C ₅ H ₅ W(CO) ₂ [(PMe ₃)HC–CH(COMe)]	1880, 1776; 1635	5 08	2.49(d,d)///2.01(d,d)	2.14	1.56(d) [12.8]	450	[178]

IR-, ¹H-NMR- UND MASSENSPEKTROSKOPISCHE CHARAKTERISIERUNG DER KOMPLEXE II UND III

TABELLE 1

C ₃ H ₅ W(CO) ₂ [(PMe ₃)HC ⁻ CH(COEt)]	1882, 1775; 1635	5.07	2.45(d,d)/2.03(d,d) [12.5] ^c /[8.9] ^d [7.7] ^e	2.55(q)/1.06(t) 7.4 °	1.57(d)[12.9]	464	134
C ₅ H ₅ W(CO) ₂ [(PMe ₃)HC-CH(CO-n-Bu)]	1878, 1770; 1628	5.07	2.43(d,d)/2.03(d,d) [12.7] ^c /[7.7] ^d [8.3] ^c	2.45(m), 2.12 1.30(m), 0.94(m)	1.57(d) [12.9]	492	149
C ₅ H ₄ MeW(CO) ₂ [(PMe ₃)HC-CH(COMe)]	1882, 1775; 1635	4.94(m), 4.90(m) 2.13	2.50(d,d)/1.81(d,d) [12.3] '/[8.0] ^d [8.3] ^e	2.13	1.57(d) [12.8]	464	161
C ₅ Me ₅ W(CO) ₂ [(PMe ₃)HC ⁻ CH(COMe)]	1876, 1760; 1624	1.84	2.52(d.d)/0.87(d.d) [12.3] ^c /[8.3] ^d [8.9] ^e	1.94	1.54(d)[12.7]	520	159
C ₅ H ₅ W(CO)(PMe ₃)[(PMe ₃)HC-	1703; 1612	4.83(d)	2.16(m)/2.03(m)	1.83	1.59(d) [12.7]	498	[125]
ĊH(COMe)]		[1.7]°	[6.8] °		1.51(d)[8.4] ⁴		
^a IN THF-Lösung. ^b In CD ₂ Cl ₂ -Lösung, be ^h ${}^{2}J(W,H)$ 2.3 Hz., n.e. = nicht eindeutig, d =	i – 20°C; δ-Werte Dublett, m = Multif	in ppm. ^{c 3} /	(P,H) in Hz. ^d ² J(P,H)	in Hz. ^{e 3} J(H,H) i	n Hz. ^J ² J(W,H) 3.2 Hz. ^g ² J(W.H) 4.5 Hz.

Komplex	¹³ C-NMR "	nemen a la compositiva de la calega de la calega de la calega de la compositiva de la constante de la constante	nen en la substancia de la substancia de la substance en en en la substancia de la substancia de la substancia	and of a conversion of the available and the origin of the available and the second	n for a final de la companya de la c	n der er verstellt. An eine eine der eine eine statigten das Auferten eine verste der Auferten Bertreten eine eine	¹¹ P.NMR ¹⁰
	δ(η ⁵ -Ar)	δ(M -CO)	δ(M-C-P)	8(M-C)	å(PMe,)	0 8(C-R)	&(PMe,)
		[³ <i>J</i> (P.C) in Hz]			[³ J(P,C) in Hz]	[³ <i>J</i> (P,C) III Hz]	
C ₅ H,Mo(CO) ₂ [(PMe ₃)HĆ-ČH(COMe)]	92.9	252 3(d) [9 4] 249 8	12 0(d) [76 6] ⁴ [147 0] ⁴	39 5 [157.3] ⁴	[0.65] (P)8 [1	205 6(d) [6 0] 28.8	28 4
$C_{s}H_{4}MeMo(CO)_{2}[(PMe_{3})HC-CH(COMe)]$	108 27 95.67 93 37 93 17 90.87 14 7	252 8(d) [9 4] 250 3 [2 6]	13 9(d) [76.1] ' [151 3] ⁴	401[1547]	11 9(d) [58.1]	205.6(d) [6.8] 28 8	27.7
C ₅ Me ₅ Mo(CO) ₂ [(PMe ₃)HC-CH(COMe)]	101.9/10.3	252.9(d) [9 4] 251 7	18 3(d) [74 4] ⁽	437	12.3(d) [590]	201.1(d) [6.0] 28.3	27.2
C ₅ H ₅ W(CO) ₂ [(PMe ₁)HC-CH(COMe)]	91.8	244.1(d) [9 4] 241.6	2 4(d) [74 4] ⁽ [150 0] ^d [37 6] ⁽	30 2 [155 6] " [18 8] '	11 7(d) [58 1]	206.5(d) [4.3] 29.0 [126 0] ^J	28 6
C ₄ H ₅ W(CO) ₂ [(PMe ₄)HC-CH(COEt)]	916	244 2(d) [8 5] 241.9	2 1(d) [75 2] ⁺ [150 4] ^J [37 6] ⁺	28.8 [155 6] ^J [18.8] ^c	11 7(d) [58.1]	210.2(d) [4.3] 10.1/34.8	28.8
C _s H _s W(CO) ₂ [(PMe _s)HC-CH(CO-n-Bu)]	L 16	244 l(d) [9 4] 241 8	2 4(d) [74 4]` [154 0] ⁴ [39 3] ⁴	29.3 [156.4] " [18.8] '	[0'65] (p)8 [1]	209.9(d) [5.0] 41.9/28.3/ 23.0/14.0	28.6
C ₅ H ₄ MeW(CO) ₂ [(PMe ₃)HC-CH(COMe)]	106 97 94 87 92 07 91.97 89.9714 8	244,7(d) [9.4] 242 5	4 8(d) [74 3] ⁺ [39 3] ^c	31 U [18 8]*	11 8(d) [58.1]	206.4(d) 5.1] 29.0	28.1
C,Me,W(CO) ₂ [(PMe,)HC-CH(COMe)]	100.8710.3	245 2 [6.0] 244.7	9 5(d) [72 7] ⁴ [152.1] ⁴ [36 0] ⁴	35 0 (153 9] " [17.1] '	11 7(d) [59 0]	203.0(d) [4 3] 28 5	27 8
Ϛͺ Η_s₩(CO ϗ₽Μͼ ₁)[ΡΜͼ ₁)ΗϹ–ϹΗ(COMε)]	88.0	238 2(d.d) [8 6]	8 l(d) [69 6] ⁴ [142 8] ⁴ [43 9] ⁴	37 8 [155 0] ⁷ [18 0] ²	12 5(d) [58 6] 21.0(d) [30 5]	205.8(d) [3 6] 22 6 [128.7] ^d	24.9 8.5 [358.9] ^f
" In CD_2Cl_2 , bet $-20^{\circ}C$, δ -Werte in ppm. ^b	In CD ₂ Cl ₂ , het – 2	0°C. δ-Werte ın p	рт. ¹ J(P,C) и	Нг ^J ^J J(C,H) ш	1 Hz * ¹ J(W,C) m	n Hz. [/] ¹ J(W,P) In	Hz

¹¹C-NMR UND ³¹P-MMR-SPEKTROSKOPISCHE CHARAKTERISIERUNG DER KOMPLEXE II UND III

TABELLE 2

Wir hatten früher aufgrund der niedrigen ν (CO)-Bande im IR-Spektrum (1703 cm⁻¹, in THF) und fehlender eindeutiger ¹³C-NMR-Befunde für III irrtümlich einen metallacyclischen Sechsring angenommen [13]. Die Konstitution von III erklärt sich jetzt eindeutig aus dem ¹³C-NMR-Spektrum: Der terminale CO-Ligand gibt sich als Doppeldublett bei δ 238.2 ppm (in CD₂Cl₂, bei -20° C) zu erkennen, die beiden metallacyclischen Kohlenstoffatome sind ähnlich stark entschirmt wie diejenigen im Komplextyp II, und als Indiz für die direkte Bindung an das Metall sprechen zwei ¹J(W,C)-Kopplungen (18.0 bzw. 43.9 Hz), die in der erwarteten Grössenordnung liegen. In den ³¹P-NMR-Spektren findet man für den ylidischen Phosphor der Komplexe II und III wesentlich stärker entschirmte Signale als bei Trimethylphosphanliganden. Darüber hinaus bietet bei den W-Derivaten die ¹J(W,P)-Kopplung eine sichere Unterscheidung zwischen den beiden PMe₃-Molekülen. Schliesslich erkennt man auch im ¹H-NMR-Spektrum den Phosphoniumsubstituenten an seiner ¹J(P,H)-Kopplung (ca. 12.8 Hz), die deutlich grösser ist (vgl. [14,15]) als im PMe₃-Liganden (ca. 8.4 Hz).

Nur stark basische Phosphane, wie PMe_3 oder PEt_3 , lassen sich an I addieren; Triphenylphosphan oder Trimethylphosphit verhalten sich inert.

HCl-Gas reagiert in Methylenchlorid augenblicklich mit den Komplexen II, wobei dunkelrote Lösungen entstehen. Die Reaktionsprodukte wurden bisher noch nicht aufgeklärt.

Festkörperstruktur von $C_5H_5W(CO)_2[(PMe_3)HC-CH(COMe)] \cdot CH_2Cl_2$

Der Strukturvorschlag für die Metallacyclopropankomplexe II und III, der sich insbesondere auf die ¹³C-NMR-spektroskopischen Befunde der W-<u>Derivate</u> stützt, konnte durch eine Röntgenstrukturanalyse des Komplexes $C_5H_5W(CO)_2$ -[(PMe₃)HC-CH(COMe)]·CH₂Cl₂ bestätigt werden. Kristalle dieser Verbindung werden beim Umkristallisieren des lösungsmittelfreien Komplexes aus CH₂Cl₂ erhalten. Wichtige Bindungsabstände und -winkel sind in Tabelle 3 zusammengestellt.

Im Festkörper liegt das Molekül $C_5H_5W(CO)_2[(PMe_3)HC-CH(COMe)]$ als verzerrte tetragonale Pyramide vor, auf deren Spitze der π -gebundene Cyclopentadienylligand zu liegen kommt (vgl. Fig. 1).

Von besonderem Interesse ist das Vorliegen eines Metallacyclopropanrings, nachdem bisher nur Molekülstrukturen von Olefinkomplexen bekannt sind, in denen aufgrund der beobachteten Atomabstände eine metallacyclische Grenzstruktur angenommen wurde. Die Abstände W-C(3) und W-C(4) liegen mit 2.206(9) bzw. 2.279(9) Å sehr gut in dem Bereich, der für W–C-Einfachbindungen in Betracht kommt. Den signifikant grossen Unterschied der beiden Werte führen wir auf die unterschiedlichen Einflüsse der PMe₃- und COMe-Substituenten an C(3) bzw. C(4) zurück, die auch in den dazugehörigen ¹J(W,C)-Kopplungen im ¹³C-NMR-Spektrum zum Ausdruck kommen. Als Vergleichsmaterial für W-C-Einfachbindungsabstände bieten sich die Alkylkomplexe W(CH₂-t-Bu)(CH-t-Bu)(C-t-Bu)(dmpe) (2.258(14) Å [16]) und WMe₄[ON(Me)NO], (2.15(5) und 2.25(5) Å [17]) sowie der Phenylkomplex $C_{2}H_{3}W(O)(C_{2}Ph_{2})Ph$ (2.25(3) Å [18]) an. Der Abstand C(3)–C(4) ist mit 1.448(13) Å wesentlich grösser, als man dies von C-C-Abständen typischer Olefinkomplexe kennt. Neutronenbeugungen [19] am Zeise'schen Salz $K[PtCl_3(C_2H_4)] \cdot H_2O$ erbrachten einen C-C-Abstand von 1.375(4) Å, der gegenüber dem C-C-Abstand des freien Ethylens mit 1.337(2) À [20] nur geringfügig aufgeweitet ist. Es gibt

ΤA	BEL	LE.	3
----	-----	-----	---

WICHTIGE BINDUNGSABSTÄNDE UND -WINKEL IN $C_5H_5W(CO)_2[(PMe_3)HC-CH(COMe)] \cdot CH_2Cl_2^{a}$

Atome	Abstand (Å)	Atome	Winkel (°)
$\overline{W-C(1)}$	1.938(10)	C(1)-W-C(2)	77 6(4)
W-C(2)	1.931(9)	C(1) - W - C(3)	114.8(4)
W-C(3)	2.206(9)	C(1) - W - C(4)	87.5(4)
W-C(4)	2.279(9)	C(1)-W-Z	123 3
W-C(11)	2.300(8)	C(2) - W - C(3)	92.6(4)
W-C(12)	2.365(10)	C(2) - W - C(4)	112.5(4)
W-C(13)	2.388(10)	C(2)-W-Z	120.9
W-C(14)	2.368(10)	C(3)-W-C(4)	37.6(3)
W-C(15)	2.312(10)	C(3)-W-Z	116.9
W-Z	2.009(10)	C(4)-W-Z	122.0
C(1) - O(1)	1.172(12)	W-C(1)-O(1)	175.7(8)
C(2) - O(2)	1.170(12)	W-C(2)-O(2)	175.7(8)
C(3) - C(4)	1.448(13)	W-C(3)-C(4)	73.9(5)
C(3)-P	1.762(9)	W-C(3)-P	123.2(5)
C(4) - C(5)	1.483(13)	C(4) - C(3) - P	119.7(7)
C(5)-C(6)	1.551(15)	W - C(4) - C(3)	68.5(5)
C(5)-O(3)	1.217(12)	W - C(4) - C(5)	113.3(6)
P-C(21)	1.786(11)	C(3)-C(4)-C(5)	116.8(8)
P-C(22)	1.809(10)	C(4) - C(5) - O(3)	124 6(9)
P-C(23)	1.809(11)	C(4) - C(5) - C(6)	115.0(8)
C(11)-C(12)	1.418(16)	O(3)-C(5)-C(6)	120.4(9)
C(12) - C(13)	1.436(15)	C(3) - P - C(21)	108.4(5)
C(13)-C(14)	1.438(15)	C(3)-P-C(22)	114.3(5)
C(14)-C(15)	1.388(15)	C(3)-P-C(23)	110.6(5)
C(15)-C(11)	1.448(15)	Cl(1)-C(30)-Cl(2)	112.6(8)
C(30)-Cl(1)	1.730(15)		
C(30)-Cl(2)	1.746(17)		

" Das Zentrum des Cyclopentadienylringes ist mit Z bezeichnet.

allerdings Ethylenkomplexe, die aufgrund besonders grosser C-C-Abstände am besten als Metallacyclopropankomplexe angesehen werden. Solche Komplexe sind z.B. $(C_5Me_5)Ta(CHCMe_3)(C_2H_4)(PMe_3)$ (1.477(4) Å [21]), *trans*-Mo(C_2H_4)₂-(PMe₃)₄ (1.40(1) Å [22]) und $(C_5H_5)_2Nb(C_2H_4)Et$ (1.406(13) Å [23]).

Methylenchlorid fungiert in der Kristallstruktur als "Kristallmethylenchlorid". Zwischen ihm und den Atomen des W-Komplexes liegen keine bemerkenswert engen Kontakte vor.

Beschreibung der Versuche

Alle Operationen wurden unter Schutzgasatomsphäre und mit wasserfreien Lösungsmitteln durchgeführt. Die Ausgangsverbindungen I wurden nach bereits veröffentlichten Angaben dargestellt. Zur spektroskopischen Charakterisierung wurden folgende Instrumente verwendet: IR-Spektren: Perkin-Elmer 297; NMR-Spektren: JEOL FX 90Q; Massenspektrum: Varian MAT CH7 (Elektronenstoss-Ionenquellen IXB).

Darstellung der Komplexe II

Es wurden alle Komplexe des Typs II nach derselben Methode dargestellt: Etwa 3 mmol des jeweiligen Vinylketonkomplexes I wurden in 30–50 ml Pentan gelöst, die Lösung wurde über Filterflocken filtriert und dann bei -30° C mit ca. 6 mmol Trimethylphosphan versetzt. Bei zweitägigem Stehen der Lösung in der Gefriertruhe (-30° C) fielen die Komplexe II als schwerlösliche gelborange Produkte aus, die nach dem Dekantieren des Lösungsmittels mit wenig kaltem Pentan gewaschen wurden. Zum Kristallisieren eignen sich Mischungen aus Methylenchlorid/Pentan. Die Molybdänkomplexe des Typs II sind wesentlich luft- und temperaturempfindlicher als die Wolframderivate. Die Methylcyclopentadienylderivate zeigen höhere thermische Beständigkeit als die unsubstituierten Komplexe; beide werden von den Pentamethylcyclopentadienylverbindungen übertroffen. Die Verbindungen II und III wurden durch ihren Schmelzpunkt, IR-, ¹H-, ¹³C- und ³¹P-NMR- sowie massenspektroskopisch charakterisiert (vgl. Tabellen 1 und 2).

Röntgenkristallographie von $C_5 H_5 \dot{W}(CO)_2 [(PMe_3)HC - CH(COMe)] \cdot CH_2 Cl_2$ Kristallisation aus CH₃Cl₃

Die Röntgenmessungen erfolgten bei -40° C mit graphitmonochromatisierter Mo- K_{α} -Strahlung (λ 0.71069 Å) auf einem Syntex-P2₁-Diffraktometer. Der luftempfindliche Kristall war dabei in einem Lindemannröhrchen eingeschlossen. Kristalldaten: Monoklin, Raumgruppe $P2_1/n$, Gitterkonstanten: a 9.747(2), b19.486(5), c 10.163(2) Å, β 101.20(2)°. Berechnete Dichte für C₁₅Cl₂H₂₁O₃PW mit Z = 4: D(ber) = 1.876 g cm⁻³. Intensitätsmessungen: ω -Scanmodus, $2\theta_{max}$ 48°. Lpund Absorptionskorrekturen wurden angebracht, letztere auf ψ -Scans basierend (μ 61.8 cm⁻¹). Die weiteren Rechnungen wurden unter Benutzung der 2943 unabhängigen Reflexe mit $I \ge 1.96\sigma(I)$ durchgeführt. Strukturbestimmung mittels Patterson- und Fourier-Synthesen. Verfeinerung mit anisotropen Temperaturfaktoren für Neutralatome. H-Atome in allen Stadien ignoriert. R(F) 0.041 und $R_w(F^2)$ ebenfalls 0.041. Streufaktoren für neutrale Atome aus [24], Korrekturwerte

		· · · · · · · · · · · · · · · · · · ·		
Atome	x	у	z	
w	0.10507(3)	0.18093(1)	0.01886(3)	
Р	-0.2079(2)	0.1374(1)	0 1175(3)	
C(1)	0.0644(9)	0.2687(5)	- 0.0698(9)	
O(1)	0.0484(8)	0.3231(4)	-0.1198(7)	
C(2)	0.0682(9)	0.2388(5)	0 1623(9)	
O(2)	0.0548(7)	0.2744(4)	0.2516(7)	
C(3)	-0.0798(8)	0.1164(5)	0.0234(9)	
C(4)	-0.0946(9)	0.1407(5)	-0.1132(9)	
C(5)	- 0.0685(9)	0.0902(5)	- 0.2146(10)	
C(6)	-0.0991(14)	0.1164(7)	-0.3615(11)	
O(3)	- 0.0304(7)	0.0313(3)	-01896(7)	
C(11)	0.3440(8)	0.1827(6)	0.0896(11)	
C(12)	0.3221(10)	0.1710(6)	-0.0506(12)	
C(13)	0.2535(10)	0.1057(5)	-0.0755(11)	
C(14)	0.2368(11)	0.0781(5)	0.0515(10)	
C(15)	0.2900(9)	0.1245(5)	0.1521(11)	
C(21)	-0.1362(11)	0.1230(6)	0.2908(10)	
C(22)	-0.2738(10)	0.2241(5)	0.0927(10)	
C(23)	-0.3586(11)	0.0820(6)	0.0728(13)	
C(30)	0.0650(2)	0.4168(6)	0.0952(15)	
Cl(1)	0.0245(6)	0.4791(2)	0.1986(5)	
Cl(2)	-0.2434(5)	0.4356(3)	0.0465(5)	

ORTSPARAMETER DER ATOME IN C₅H₅W(CO)₂[(PMe₃)HC-CH(COMe)]·CH₂Cl₂

 $\Delta f'$ und $\Delta f''$ aus [25]. Benutztes Programmsystem: XTL-System von Syntex. Die abschliessenden Atomkoordinaten sind in Tabelle 4 zusammengestellt *.

Dank

Wir danken Herrn Prof. C.G. Kreiter für die Aufnahme der ³¹P-entkoppelten ¹H-NMR-Spektren sowie der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung. Der eine von uns (U.T.) dankt Herrn Prof. E.O. Fischer für die Einladung zu einer Gastprofessur an der T.U. München.

Literatur

- 1 H.G. Alt, Angew. Chem., 88 (1976) 800; Angew. Chem. Int. Ed. Engl., 15 (1976) 759.
- 2 H.G. Alt, Chem. Ber., 100 (1977) 2862.
- 3 H.G. Alt und W. Stadler, Z. Naturforsch. B, 32 (1977) 144.
- 4 J.L. Davidson, M. Green, J.Z. Nyathi, C. Scott, F.G.A. Stone, A.J. Welch und P. Woodward, J Chem. Soc., Chem. Commun., (1976) 714.
- 5 M. Green, J.Z. Nyathi, C. Scott, F.G.A. Stone, A J. Welch und P. Woodward, J. Chem. Soc., Dalton Trans., (1978) 1067.
- 6 H.G. Alt, J.A. Schwarzle und F.R. Kreissl, J. Organomet. Chem., 152 (1978) C57.

TABELLE 4

^{*} Die anisotropen Temperaturfaktoren sowie die F_o -Liste können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer CSD 50794, der Autoren und des Zeitschriftenzitats angefordert werden.

- 7 H.G. Alt, unveröffentlicht.
- 8 D.J. Patel, M.E.H. Howden und J.D. Roberts, J. Am. Chem. Soc., 85 (1963) 3218.
- 9 J.J. Burke und P.C. Lauterbur, J. Am. Chem. Soc., 86 (1964) 1870.
- 10 J.L. Thomas, J. Am. Chem. Soc., 95 (1973) 1838; Inorg. Chem., 17 (1978) 1507.
- 11 M.E. Eichner, H.G. Alt und M.D. Rausch, J. Organomet. Chem., 264 (1984) 309.
- 12 W.C. Kaska, Coord. Chem. Rev., 48 (1983) 1.
- 13 H.G. Alt und J.A. Schwärzle, J. Organomet. Chem., 155 (1978) C65.
- 14 H. Schmidbaur und W. Tronich, Chem. Ber., 101 (1968) 595.
- 15 F.R. Kreissl, P. Stückler und E.W. Meineke, Chem. Ber., 110 (1977) 3040.
- 16 M.R. Churchill und W.J. Youngs, J. Chem. Soc., Chem. Commun., (1979) 321.
- S.R. Fletcher, S. Shortland, A.C. Skapski und G. Wilkinson, J. Chem. Soc., Chem. Commun., (1972) 922; S.R. Fletcher und A.C. Skapski, J. Organomet. Chem., 59 (1973) 299.
- 18 N.G. Bokiy, Y.V. Gatilov, Yu.T. Struchkov und N.A. Ustynyuk, J. Organomet. Chem., 54 (1973) 213.
- 19 R.A. Love, T.F. Koetzle, G.J.B. Williams, L.C. Andrews und R. Bau, Inorg. Chem., 14 (1975) 2653.
- 20 L.S. Bartell, E.A. Roth, C.D. Hollowell, K. Kuchitzu und J.E. Young, Jr., J. Chem. Phys., 42 (1965) 2683.
- 21 A.J. Schultz, R.K. Brown, J.M. Williams und R.R. Schrock, J. Am. Chem. Soc., 103 (1981) 169.
- 22 E. Carmona, J.M. Marin, M.L. Poveda, J.L. Atwood, R.D. Rogers und G. Wilkinson, Angew. Chem., 94 (1982) 467; Angew. Chem. Int. Ed. Engl., 21 (1982) 441; Suppl. (1982) 1116.
- 23 L.J. Guggenberger, P. Meakin und F.N. Tebbe, J. Am. Chem. Soc., 96 (1974) 5420.
- 24 D.T. Cromer und J.T. Waber, Acta Cryst., 18 (1965) 104.
- 25 D.H. Templeton in International Tables for X-Ray Crystallography, Vol. III, Kynoch Press, Birmingham, (1968) p. 215/216.